確診後遺症眼睛症狀 竹北中醫推薦

最常報告的表現並不影響視力的是視網膜出血和棉絮斑。最常見的危及視力的表現是視網膜靜脈閉塞,伴隨黃斑水腫。偶爾,患者也可能出現視網膜動脈閉塞和眼部發炎。這些表現可能出現在確診症狀開始後一週內,也可能在6周以上出現。

摘要

本文將介紹有關新冠病毒感染患者視網膜表現及其病理學含義的系統綜述。新冠肺炎是由嚴重急性呼吸綜合症冠狀病毒2型(SARS-CoV-2)病毒引起的大流行病。除了呼吸系統故障外,COVID-19還會引起全身性的血栓栓塞狀態,導致嚴重的心血管、腦血管和周邊血管表現。然而,我們對於由系統性COVID-19引起的視網膜表現的了解很少。本文通過系統綜述,全面總結了自疫情開始以來記錄的所有由COVID-19引起的視網膜表現。

方法:本文使用PRISMA聲明,系統綜述了截至2020年11月27日發表的所有報告COVID-19患者視網膜表現的研究。

結果:本文共納入15篇文章:11篇案例報告和4篇橫斷面案例系列。最常報告的表現並不影響視力的是視網膜出血和棉絮斑。最常見的危及視力的表現是視網膜靜脈閉塞,伴隨黃斑水腫。偶爾,患者也可能出現視網膜動脈閉塞和眼部發炎。這些表現可能出現在COVID-19症狀開始後一週內,也可能在6周以上出現。

結論: 雖然新冠病毒大多導致較輕微的病症,但它也可能引發嚴重的血栓栓塞併發症,進而對心血管、腦血管和周邊血管產生嚴重影響。然而,病人不論是有病癥或是表面上看來健康的人,都有可能出現多種視網膜併發症,這些併發症可能會導致視力喪失。目前尚無關於使用抗凝血劑或抗炎藥物來管理視網膜併發症的共識,不過這些症狀可以針對個別情況來處理。 

Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: a systematic review

Int Ophthalmol. 2022; 42(1): 323–336.

新冠肺炎疫情已經全球爆發,奪走了數百萬人的生命,其症狀多樣、康復時間長且復原後也可能產生許多併發症。這種疾病起初症狀輕微,有發燒、咳嗽、疲倦等,進一步發展可能會引發中度至輕度的下呼吸道感染,但通常不需要特殊治療[1]。儘管呼吸系統是最常受影響的器官,但這種病毒也表現出神經病原性和內皮病原性,並且可能引起全身性的炎症反應,即所謂的「細胞激素風暴」。相當一部分的 COVID-19 患者可能會表現出神經和血管方面的症狀[2, 3]。

研究人員提出的病毒進入中樞神經系統的途徑是通過血液進入腦循環,由於血流速度較慢,病毒易於影響毛細血管內皮細胞,或是通過嗅球傳播[4, 5]。對於血管事件發生機制的廣泛研究已經得出結論,COVID-19 可能主要是一種引起嚴重內皮細胞損傷、補體激活和全身性炎症反應的血管性疾病,從而導致總體上的凝血狀態[6]。自 2020 年 5 月以來,已經有報告指出 COVID-19 也會影響神經感覺視網膜和視神經。本篇文章旨在系統地彙編 COVID 患者中出現的視網膜徵象,以及了解和探討冠狀病毒可能影響視網膜的機制。

確診者的視網膜出血和棉絮狀斑點

"COVID-19感染者身上網膜出血和棉絮狀斑點的現象。研究發現,在ICU中的COVID-19患者中,55.5%的人出現了網膜病變,包括火焰狀出血、棉絮狀斑點、周邊網膜出血、黃斑出血和硬渣。其他研究也發現了類似的結果,包括非危重病患者和抗體陽性患者。這些研究表明,COVID-19可能會對視網膜和視覺系統造成影響。 "

Pereira等人評估了18名COVID-19感染者,其中95%的病人入住ICU,近一半病人正在使用血管加壓素支持;55.5%的病人出現了網膜病變。其中22.2%的病人有火焰狀出血,16.7%的病人有棉絮狀斑點,11.1%的病人有周邊網膜出血,5.6%的病人有黃斑出血和硬渣。火焰狀出血表示對內部視網膜造成了傷害。其中一名病人還出現了部分網膜蒼白,暗示有最近的缺血事件。

在一個更大的系列研究中,Invernizzi等人[9]對54名非危重病患者進行了研究,發現有9.25%的患者出現網膜出血,7.4%的患者出現棉絮狀斑點。所有患者的炎症標誌都有所上升。作者還注意到這些患者的纖維蛋白原、CRP、鐵蛋白和LDH水平都有所上升。

D'Aloisio等人[10]報告了一個病例,該病人發展出雙側網膜出血,其中一個病人涉及到黃斑部位。這些出血在一個月內自行消失。網膜檢查是在RT-PCR測試呈陽性28天後,由於視力模糊而檢測到的。在最後的追蹤中,視力完全恢復。

Marinho等人[11]評估了11名COVID-19陽性患者,年齡介於25歲到70歲之間,觀察到有四名患者出現了棉絮狀斑點和網膜弧上的微小出血。

Landecho等人[12]研究了27名COVID-19抗體陽性患者,發現在首次出現臨床症狀後的中位數43天後,22%的患者出現棉絮狀斑點.此外,這些研究也顯示了與COVID-19相關的視網膜病變可能是由炎症反應引起的。研究人員還觀察到,許多病人的炎症標記都升高了,包括纖維蛋白原、C-反應蛋白、鐵蛋白和乳酸脫氫酶等。另外,Landecho等人還觀察到,所有患者在眼底檢查時的D-二聚體水平都升高了,中位數值為385。

雖然這些研究結果仍然需要更多的研究來證實,但這些結果表明COVID-19可能對視網膜和視覺系統造成影響。因此,在懷疑感染COVID-19的患者中,眼科專業人員應當進行更詳細的檢查,以及及時進行視力康復的評估和治療。

(點擊閱讀參考文獻)

1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan. China Lancet. 2020;395(10223):497–506. [PMC free article] [PubMed] [Google Scholar]

2. Nath A. Neurologic complications of coronavirus infections. Neurology. 2020;94(19):809–810. [PubMed] [Google Scholar]

3. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan. China JAMA Neurol. 2020;77(6):683–690. [PMC free article] [PubMed] [Google Scholar]

4. Baig AM, Khaleeq A, Ali U, Syeda H. Evidence of the COVID-19 Virus Targeting the CNS: Tissue Distribution, Host-Virus Interaction, and Proposed Neurotropic Mechanisms. ACS Chem Neurosci. 2020;11(7):995–998. [PMC free article] [PubMed] [Google Scholar]

5. Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol. 2008;82(15):7264–75. [PMC free article] [PubMed] [Google Scholar]

6. Marchetti M. COVID-19-driven endothelial damage: Complement, HIF-1, and ABL2 are potential pathways of damage and targets for cure. Ann Hematol. 2020;99:1701–1707. [PMC free article] [PubMed] [Google Scholar]

7. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34. [PubMed] [Google Scholar]

8. Pereira LA, Soares LCM, Nascimento PA, Cirillo LRN, Sakuma HT, Veiga GLD, et al. (2020) Retinal findings in hospitalised patients with severe COVID-19. Br J Ophthalmol, 16:bjophthalmol-2020–317576 [PubMed]

9. Invernizzi A, Torre A, Parrulli S, Zicarelli F, Schiuma M, Colombo V, et al. Retinal findings in patients with COVID-19: Results from the SERPICO-19 study. EClinicalMedicine. 2020;27:100550. [PMC free article] [PubMed] [Google Scholar]

10. D'Aloisio R, Nasillo V, Gironi M, Mastropasqua R. Bilateral macular hemorrhage in a patient with COVID-19. Am J Ophthalmol Case Rep. 2020 doi: 10.1016/j.ajoc.2020.100958. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

11. Marinho PM, Marcos AAA, Romano AC, Nascimento H, Belfort R., Jr Retinal findings in patients with COVID-19. Lancet. 2020;395(10237):1610. [PMC free article] [PubMed] [Google Scholar]

12. Landecho MF, Yuste JR, Gándara E, Sunsundegui P, Quiroga J, Alcaide AB, et al. COVID-19 retinal microangiopathy as an in vivo biomarker of systemic vascular disease? J Intern Med. 2020;289(1):116–20. [PubMed] [Google Scholar]


確診者的視網膜靜脈阻塞

"研究發現COVID-19感染可能與靜脈阻塞有關。與COVID-19相關的中心視網膜靜脈阻塞(CRVO)的案例中,患者年齡在17至54歲之間,其中3/4例患者有與之相關的黃斑水腫。類固醇治療對改善視力有幫助。此外,還有一名COVID-19患者出現了右腿深部靜脈血栓形成和心臟問題。另一名17歲的COVID-19患者出現了中心靜脈阻塞性視網膜靜脈瘤。" 

研究發現 COVID-19 感染可能與靜脈阻塞有關。目前已報告了一些與 COVID-19 相關的中心視網膜靜脈阻塞 (CRVO) 的案例。根據迄今為止的四個案例報告 [13-16],患者的年齡在17至54歲之間(中位數=40歲)。發病後到就診時間範圍從5天至6週不等。其中3/4例患者有與之相關的黃斑水腫,第四例患者有即將發生的CRVO。其中一名患者接受持續釋放的地塞米松植入劑(Ozurdex,愛爾蘭都柏林,Allergan)治療,在2週內將視力從20/200恢復到20/40。Invernizzi等人 [13]報告的案例表現為20/40的視力、視網膜出血、增加的靜脈扭曲度和全視網膜蕨狀白斑(可見為靜脈周圍的螢光素自發螢光減弱),這些症狀導致作者診斷該患者即將發生CRVO。該患者對類固醇治療作出反應(最初靜脈注射,然後口服逐漸減量劑量)。一周後,患者的視網膜改變完全消失。Insausti-Garcia A報告的案例表現為視神經乳頭靜脈炎 [14]。 Sheth等人 [15]報告了一例下半視網膜靜脈阻塞,患者的血管被擴張和扭曲,顯示為血管壁染色,提示有血管炎性病因。此外,還使用光學相干斷層掃描(OCT)記錄了視網膜內層的失調以及視黃體的神經感覺脫離。患者接受全身類固醇和拉尼珠單抗治療黃斑水腫,視力從20/200改善至20/30。 作者還注意到患者的D-二聚體值明顯升高。 有一名40歲的患者在COVID相關症狀出現後5天出現CRVO,並伴隨著右腿深部靜脈血栓形成,心臟超聲檢查顯示右心室嚴重擴張,伴隨著右心室壓力和容積過載,符合右心負荷過重的特徵[16]。此外,這位患者還患有雙側CRVO,這是迄今為止報告的唯一一個這樣的案例。 Walinjkar等人[17]報告了一位17歲COVID-19患者出現中心靜脈阻塞性視網膜靜脈瘤,且伴隨黃斑水腫,接受了兩次貝伐珠單抗注射後,視力在兩個月內從20/60提高到20/40。 

13. Invernizzi A, Pellegrini M, Messenio D, Cereda M, Olivieri P, Brambilla AM, et al. Impending Central Retinal Vein Occlusion in a Patient with Coronavirus Disease 2019 (COVID-19) Ocul Immunol Inflamm. 2020;28(8):1290–1292. [PubMed] [Google Scholar]

14. Insausti-García A, Reche-Sainz JA, Ruiz-Arranz C, López Vázquez Á, Ferro-Osuna M. Papillophlebitis in a COVID-19 patient: inflammation and hypercoagulable state. Eur J Ophthalmol. 2020;30:1120672120947591. [PMC free article] [PubMed] [Google Scholar]

15. Sheth JU, Narayanan R, Goyal J, Goyal V. Retinal vein occlusion in COVID-19: a novel entity. Indian J Ophthalmol. 2020;68(10):2291–2293. [PMC free article] [PubMed] [Google Scholar]

16. Gaba WH, Ahmed D, Al Nuaimi RK, Dhanhani AA, Eatamadi H. Bilateral central retinal vein occlusion in a 40-year-old man with severe coronavirus disease 2019 (COVID-19) Pneumonia. Am J Case Rep. 2020;21:e927691. [PMC free article] [PubMed] [Google Scholar]

17. Walinjkar JA, Makhija SC, Sharma HR, Morekar SR, Natarajan S. Central retinal vein occlusion with COVID-19 infection as the presumptive etiology. Indian J Ophthalmol. 2020;68(11):2572–2574. [PMC free article] [PubMed] [Google Scholar]


確診者的視網膜動脈閉塞

"新冠病毒可能會對眼睛動脈產生影響,導致中央視網膜動脈閉塞和黃斑部位病變,進而導致視力受損。其中,Gascon等人提到PAMM和AMN這兩種眼疾也可能是新冠病毒感染的後遺症之一。但是,由於以上研究樣本數較少,患者情況差異也比較大,因此需要更多的研究來確認新冠病毒對眼睛動脈的影響。 "

Acharya S等人[18]報告了一位60歲男性患者,因COVID-19引起的急性呼吸窘迫症入住ICU,進行了機械通氣治療。患者血中纖維蛋白原、D-二聚體水平和IL-6升高。入院12天後,患者一只眼睛出現櫻桃紅色斑點,視神經盤邊緣模糊和視網膜白化,提示為中央視網膜動脈閉塞。關於患者的進一步臨床詳情尚未報告。

Gascon等人[19]描述了一位53歲的患者,其在黃斑處出現了不明確的網膜內白色病變,伴有網膜內出血,多個額外的深層網膜出血和羅斯斑點。經過黃斑部位的光學相干斷層掃描(OCT)顯示,內核層和外膜形成層涉及多個高反射帶,提示為副中央急性中央黃斑病變(PAMM)。外鐘狀層和交織區的弱化,伴有外膜核層的高反射性和視網膜下液,提示為急性黃斑神經視網膜病變(AMN)。OCT血管攝影顯示深層毛細血管網中流動訊號減少,對應於PAMM區域。Virgo等人[20]描述了兩位COVID-19後的患者,分別在發熱疾病後35天和擦拭陽性後16天出現PAMM和AMN。這兩位患者都出現了新發的副中央暗點。

(點擊閱讀參考文獻)

18. Acharya S, Diamond M, Anwar S, Glaser A, Tyagi P. Unique case of central retinal artery occlusion secondary to COVID-19 disease. IDCases. 2020;21:e00867. [PMC free article] [PubMed] [Google Scholar]

19. Gascon P, Briantais A, Bertrand E, Ramtohul P, Comet A, Beylerian M, et al. Covid-19-associated retinopathy: a case report. Ocul Immunol Inflamm. 2020;28(8):1293–1297. [PubMed] [Google Scholar]

20. Virgo J, Mohamed M. Paracentral acute middle maculopathy and acute macular neuroretinopathy following SARS-CoV-2 infection. Eye: Published online July; 2020. [PMC free article] [PubMed] [Google Scholar]


確診眼睛玻璃體發炎後葡萄膜炎和脈絡膜病變

新冠肺炎(COVID-19)不僅會影響呼吸系統,還可能對眼睛造成影響。最近的研究發現,COVID-19與多種眼睛疾病有關。

一些COVID-19患者報告了視覺問題,包括視力下降、眼睛疼痛、發紅和發炎等症狀。研究人員對這些患者進行了研究,發現了幾種與COVID-19相關的眼睛疾病。

一種名為Vitritis的疾病會影響眼睛內部的組織。(Vitritis是一種眼部疾病,指眼球後部的玻璃體內發生的發炎反應。玻璃體是眼球中充滿著透明凝膠狀物質的部分,它填充了眼球後部,並且幫助保持眼球的形狀。當發生vitritis時,眼球後部的發炎會導致玻璃體內出現浮動物體、視力模糊、眼壓升高等症狀。vitritis可以是多種眼部疾病的表現,例如視網膜炎、葡萄膜炎等。在COVID-19患者中報導了發生vitritis的病例,但該疾病與COVID-19的關聯尚不清楚。 )研究人員報告了一名57歲女性,在COVID-19症狀發作12天後出現了Vitritis,伴隨著黃色斑塊。進行光學相干斷層掃描(OCT)後,發現在IPL和神經節細胞層出現了高反射性病變,並且EZ有破壞。這些病變持續了一個月,2個月後大小和反射率減小。研究人員猜測這些病變可能是副中央急性中央黃斑病變(PAMM)或急性黃斑神經視網膜病變(AMN)病變,但並沒有做出明確的結論。

後部葡萄膜炎是一種影響眼睛後部的疾病。一名11歲男孩因出現下肢水腫斑塊就診,後被診斷為凍瘡。進行眼睛檢查後,發現男孩左眼有視網膜血管炎、周圍滲出物和視網膜渗出。

此外,還有一些COVID-19患者報告了眼睛中出現黃斑部位病變或脈絡膜炎病變。然而,目前還沒有明確的證據顯示這些病變與COVID-19直接相關。

(點擊閱讀參考文獻)

21. Zago Filho LA, Lima LH, Melo GB, Zett C, Farah ME. Vitritis and outer retinal abnormalities in a patient with COVID-19. Ocul Immunol Inflamm. 2020;28(8):1298–1300. [PubMed] [Google Scholar]

22. Quintana-Castanedo L, Feito-Rodríguez M, Fernández-Alcalde C, Granados-Fernández M, Montero-Vega D, Mayor-Ibarguren A, et al. Concurrent chilblains and retinal vasculitis in a child with COVID-19. J Eur Acad Dermatol Venereol. 2020 doi: 10.1111/jdv.16801. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

23. Pirraglia MP, Ceccarelli G, Cerini A, Visioli G, d'Ettorre G, Mastroianni CM, et al. Retinal involvement and ocular findings in COVID-19 pneumonia patients. Sci Rep. 2020;10(1):17419. [PMC free article] [PubMed] [Google Scholar]


確診和眼睛疾病

病原在神經結構和視網膜中的定位

先前的研究已經證實冠狀病毒可以透過突觸逆行移動,通過內吞或外吐作用進入大腦 [32, 33]。SARS-CoV和MERS病毒可能直接通過上調炎症標誌物或直接自噬誘導延髓呼吸中心的神經細胞死亡。對於SARS-CoV-2,也提出了一個類似的模型,即病毒感染周邊神經元,然後通過突觸運輸逆行到達大腦 [34]。最近還發現受影響患者的屍體視網膜中也檢測到了SARS-CoV-2 RNA [35]。有人假設病毒可能導致視網膜血管炎和缺血。然而,像血管擴張、視網膜出血和棉絮斑等特徵是非特異性症狀,可能是由於系統性疾病而不是由SARS-CoV-2對中樞神經系統的主要影響所致。 

確診眼睛的內皮細胞

最近的證據強烈顯示COVID-19實際上是一種影響內皮細胞的血管疾病,通過在多個器官(包括視網膜內皮細胞)表達的血管緊張素轉化酶2(ACE2)受體進行。在肺、心臟、腎臟、腸道和腦部已經證實有內皮細胞參與。病毒可能會在動脈和靜脈循環中引起內皮炎和血管炎,導致細胞水腫、擁塞和小血管免疫凝血,最終導致血液循環和器官缺血。在生理條件下,內皮細胞通過生產一氧化氮來維持平滑的血管擴張。當SARS-CoV-2使用ACE2進入細胞時,細胞失去ACE2活性,導致血管緊張素II增加,減少緊張素轉化。增加的血管緊張素II會引起血管收縮,從而增加血小板和白血球的附著性,進而引發血栓形成。此外,血管損傷的產物會通過幾個信號通路激活中性粒細胞,從而導致對內皮細胞黏液糖ocalyx的更多損害。內皮細胞釋放的促炎因子可能會引起“細胞激素風暴”,進一步損害器官。 

(點擊閱讀參考文獻)

24. Jee Y. WHO International Health Regulations Emergency Committee for the COVID-19 outbreak. Epidemiol Health. 2020;42:e2020013. [PMC free article] [PubMed] [Google Scholar]

25. Grasselli G, Pesenti A, Cecconi M. Critical care utilization for the COVID-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA. 2020;323(16):1545–1546. [PubMed] [Google Scholar]

26. Sarzi-Puttini P, Giorgi V, Sirotti S, et al. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38(2):337–342. [PubMed] [Google Scholar]

27. Long B, Brady WJ, Koyfman A, Gottlieb M. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020;38(7):1504–1507. [PMC free article] [PubMed] [Google Scholar]

28. Baig AM. Neurological manifestations in COVID-19 caused by SARS-CoV-2. Ther CNS Neurosci. 2020;26(5):499–501. [PMC free article] [PubMed] [Google Scholar]

29. Wu P, Duan F, Luo C. Characteristics of ocular findings of patients with coronavirus disease 2019 (COVID-19) in Hubei province. China JAMA Ophthalmol. 2020;138(5):575–578. [PMC free article] [PubMed] [Google Scholar]

30. Cheema M, Aghazadeh H, Nazarali S, et al. Keratoconjunctivitis as the initial medical presentation of the novel coronavirus disease 2019 (COVID-19) Can J Ophthalmol. 2020 doi: 10.1016/j.jcjo.2020.03.003. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

31. Daruich A, Martin D, Bremond-Gignac D. Ocular manifestation as first sign of coronavirus disease 2019 (COVID-19): interest of telemedicine during the pandemic context. J Fr Ophtalmol. 2020;43:389–391. [PMC free article] [PubMed] [Google Scholar]

32. Dubé M, Le Coupanec A, Wong AHM, Rini JM, Desforges M, Talbot PJ. (2018) Axonal transport enables neuron-to-neuron propagation of human coronavirus OC43. J Virol. 2018;92(17):1–21. [PMC free article] [PubMed] [Google Scholar]

33. Munster VJ, Prescott JB, Bushmaker T, Long D, Rosenke R, Thomas T, et al. Rapid Nipah virus entry into the central nervous system of hamsters via the olfactory route. Sci Rep. 2012;2:1–8. [PMC free article] [PubMed] [Google Scholar]

34. Baig AM, et al. Evidence of the COVID-19 virus targeting the CNS: tissue distribution, host-virus interaction, and proposed neurotropic mechanisms, ACS Chem. Neurosci. 2020;11:995–998. [PMC free article] [PubMed] [Google Scholar]

35. Casagrande M, Fitzek A, Pu¨schel K, et al. Detection of SARS-CoV-2 in human retinal biopsies of deceased COVID-19 patients. Ocul Immunol Inflamm. 2020;28:721–725. [PubMed] [Google Scholar]

36. Senanayake P, Drazba J, Shadrach K, et al. Angiotensin II and its receptor subtypes in the human retina. Invest Ophthalmol Vis Sci. 2007;48(7):3301–3311. [PubMed] [Google Scholar]

37. Varga Z, Flammer AJ, Steiger P, et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet. 2020;395:1417–1418. [PMC free article] [PubMed] [Google Scholar]

38. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, et al. Autopsy findings and venous thromboembolism in patients with COVID-19. Ann Intern Med. 2020;6:M20–2003. [PMC free article] [PubMed] [Google Scholar]

39. Verdecchia P, Cavallini C, Spanevello A, Angeli F. COVID-19: ACE2 centric infective disease? Hypertension. 2020;76(2):294–299. [PubMed] [Google Scholar]

40. Yamaguchi Y, Moriki T, Igari A, Matsubara Y, Ohnishi T, Hosokawa K, Murata M. Studies of a microchip flowchamber system to characterize whole blood thrombogenicity in healthy individuals. Thromb Res. 2013;132:263–270. [PubMed] [Google Scholar]

41. Leavy O. NETting a one-two punch. Nat Rev Immunol. 2015;15:526–527. [PubMed] [Google Scholar]

42. Hirota T, Levy JH. Iba T (2020) The influence of hyperglycaemia on neutrophil extracellular trap formation and endothelial glycocalyx damage in a mouse model of type 2 diabetes. NY: Microcirculation (New York; 1994. [PubMed] [Google Scholar]


確診眼睛的靜脈栓塞及動脈栓塞

靜脈血栓形成

除了嚴重的呼吸系統疾病外,COVID-19疾病的標誌是危及生命的多系統血栓栓塞併發症,甚至可能導致無症狀患者死亡[43-45]。COVID-19患者的解剖病理學證據顯示,大多數器官出現嚴重的內皮細胞損傷、凋亡、凝血和多個血管栓塞[46, 47]。除了內皮病變外,患者還可能患有內皮炎。這些表現大多是由病毒引起的全身性炎症反應所致,包括高凝狀態、血小板激活和內皮功能異常[48]。

作者最近觀察到,即使經常使用抗凝治療,約30%的COVID-19住院患者可能會發生血栓性併發症,且可能與更高的死亡率相關[49-53]。動脈和靜脈血栓栓塞(VTE)的累積發生率估計為49%[54]。這些研究表明,除了抗凝治療外,治療還應針對內皮細胞損傷。此外,多達17%的非ICU患者可能也患有VTE[55, 56]。

COVID-19疾病罕見的併發症之一是中風,患有高血壓、糖尿病和心血管疾病等風險因素的患者可能會發生此病症[57-60]。然而,在沒有這些風險因素的少數病例中,COVID-19相關凝血病(CAC)可能導致腦血管疾病[61, 62]。與細菌感染引起的分散性血管內凝血(DIC)相比,CAC的凝血指標(如凝血酶原時間和血小板計數)的變化較小,但纖維蛋白原和D-二聚體水平卻增加[63, 64]。CAC可能與D-二聚體的嚴重異常有關,而COVID-19患者的“腐敗誘導凝血病變評分sepsis-induced coagulopathy score. ”得分可能很低。因此,建議將CAC視為內皮病而非凝血病[65, 66]。 

醫院住院期間D-二聚體水平與VTE事件和死亡風險顯著相關[56, 67, 68]。因此,血漿D-二聚體水平升高伴隨著纖維蛋白原和von Willebrand因子的增加,但PT、APTT和血小板計數正常,這些特徵提示CAC的診斷,並可用D-二聚體監測患者[69-71]。 

動脈血栓形成

一些文獻報告了新冠病毒感染患者中缺血性中風和急性冠狀動脈綜合症的發生率分別為2.5%和1.1% [44]。這樣的動脈血栓在傳染病中很少見到 [72, 73]。年輕患者尤其容易出現大血管中風 [43]。此外,也報告了其他形式的動脈栓塞症(ATE),如肢體缺血、髂動脈栓塞和主動脈血栓 [74]。這些事件發生在已確診COVID-19並伴隨D-二聚體水平升高的患者中,這些患者之前並沒有動脈疾病的病史。目前還不清楚動脈血栓的確切機制,但可能與炎症細胞因子風暴有關,D-二聚體水平可能是這些事件的預測因子。 

43. Oxley TJ, Mocco J, Majidi S, Kellner CP, Shoirah H, Singh IP, et al. Large-vessel stroke as a presenting feature of Covid-19 in the young. N Engl J Med. 2020;382(20):e60. [PMC free article] [PubMed] [Google Scholar]

44. Lodigiani C, Iapichino G, Carenzo L, et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb Res. 2020;191:9–14. [PMC free article] [PubMed] [Google Scholar]

45. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. Global COVID-19 thrombosis collaborative group, endorsed by the ISTH, NATF, ESVM, and the IUA, supported by the ESC working group on pulmonary circulation and right ventricular function. COVID-19 and thrombotic or thromboembolic disease: implications for prevention, antithrombotic therapy, and follow-up: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(23):2950–2973. [PMC free article] [PubMed] [Google Scholar]

46. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, et al. Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 2020;383(2):120–128. [PMC free article] [PubMed] [Google Scholar]

47. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID- 19. Lancet. 2020;395:1417–1418. [PMC free article] [PubMed] [Google Scholar]

48. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol. 2020;7(6):e438–e440440. [PMC free article] [PubMed] [Google Scholar]

49. Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV, Endeman H. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 2020;S0049–3848(20):30120–1. [PMC free article] [PubMed] [Google Scholar]

50. Klok FA, Kruip MJHA, van der Meer NJM. Confirmation of the high cumulative incidence of thrombotic complications in critically ill ICU patients with COVID-19: an updated analysis. Thromb Res. 2020;191:148–150. [PMC free article] [PubMed] [Google Scholar]

51. Cavalcanti DD, Raz E, Shapiro M, Dehkharghani S, Yaghi S, Lillemoe K, et al. Cerebral venous thrombosis associated with COVID-19. Am J Neuroradiol. 2020;41:1370–1376. [PMC free article] [PubMed] [Google Scholar]

52. Porfidia A, Pola R. Venous thromboembolism in COVID-19 patients. J Thromb Haemost. 2020;18(6):1516–1517. [PMC free article] [PubMed] [Google Scholar]

53. Zhu J, Ji P, Pang J, Zhong Z, Li H, He C, Zhang J, Zhao C. Clinical characteristics of 3062 COVID-19 patients: a meta-analysis. J Med Virol. 2020;92(10):1902–14. [PMC free article] [PubMed] [Google Scholar]

54. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, et al. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J Thromb Haemost. 2020;18(5):1023–1026. [PMC free article] [PubMed] [Google Scholar]

55. Marchandot B, Sattler L, Jesel L, Matsushita K, Schini-Kerth V, Grunebaum L, et al. COVID-19 Related coagulopathy: a distinct entity? J Clin Med. 2020;9(6):1651. [PMC free article] [PubMed] [Google Scholar]

56. Artifoni M, Danic G, Gautier G, Gicquel P, Boutoille D, Raffi F, et al. Systematic assessment of venous thromboembolism in COVID-19 patients receiving thromboprophylaxis: incidence and role of D-dimer as predictive factors. J Thromb Thrombolysis. 2020;50(1):211–216. [PMC free article] [PubMed] [Google Scholar]

57. Mao L, Jin H, Wang M, Hu Y, Chen S, He Q, et al. Neurologic Manifestations of Hospitalized Patients With Coronavirus Disease 2019 in Wuhan. China. JAMA Neurol. 2020;77(6):683–690. [PMC free article] [PubMed] [Google Scholar]

58. Guo J, Huang Z, Lin L, Lv J. Coronavirus disease 2019 (COVID-19) and cardiovascular disease: a viewpoint on the potential influence of angiotensin-converting enzyme inhibitors/angiotensin receptor blockers on onset and severity of severe acute respiratory syndrome coronavirus 2 infection. J Am Heart Assoc. 2020;9(7):e016219. [PMC free article] [PubMed] [Google Scholar]

59. Yang J, Zheng Y, Gou X, Pu K, Chen Z, Guo Q, et al. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. Int J Infect Dis. 2020;94:91–95. [PMC free article] [PubMed] [Google Scholar]

60. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. [PMC free article] [PubMed] [Google Scholar]

61. Avula A, Nalleballe K, Narula N, Sapozhnikov S, Dandu V, Toom S, et al. COVID-19 presenting as stroke. Brain Behav Immun. 2020;87:115–119. [PMC free article] [PubMed] [Google Scholar]

62. Panigada M, Bottino N, Tagliabue P, Grasselli G, Novembrino C, Chantarangkul V, et al. Hypercoagulability of COVID-19 patients in intensive care unit: a report of thromboelastography findings and other parameters of hemostasis. J Thromb Haemost. 2020;18(7):1738–1742. [PMC free article] [PubMed] [Google Scholar]

63. Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood. 2020 4;135(23):2033–2040. 10.1182/blood.2020006000 [PMC free article] [PubMed]

64. Iba T, Levy JH. Sepsis-induced coagulopathy and disseminated intravascular coagulation. Anesthesiology. 2020;132(5):1238–1245. [PubMed] [Google Scholar]

65. Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, et al; CRICS TRIGGERSEP Group (Clinical Research in Intensive Care and Sepsis Trial Group for Global Evaluation and Research in Sepsis). High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med. 2020;46(6):1089–1098. 10.1007/s00134-020-06062-x [PMC free article] [PubMed]

66. Goshua G, Pine AB, Meizlish ML, Chang CH, Zhang H, Bahel P, et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 2020;7(8):e575–e582. [PMC free article] [PubMed] [Google Scholar]

67. Li Y, Li M, Wang M, Zhou Y, Chang J, Xian Y, et al. Acute cerebrovascular disease following COVID-19: a single center, retrospective, observational study. Stroke Vasc Neurol. 2020;5(3):279–284. [PMC free article] [PubMed] [Google Scholar]

68. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054. [PMC free article] [PubMed] [Google Scholar]

69. Ranucci M, Ballotta A, Di Dedda U, Bayshnikova E, Dei Poli M, Resta M, et al. The procoagulant pattern of patients with COVID-19 acute respiratory distress syndrome. J Thromb Haemost. 2020;18(7):1747–1751. [PMC free article] [PubMed] [Google Scholar]

70. Oudkerk M, Büller HR, Kuijpers D, van Es N, Oudkerk SF, McLoud T, et al. Diagnosis, prevention, and treatment of thromboembolic complications in COVID-19: report of the national institute for public health of the Netherlands. Radiology. 2020;297:E216–E222. [PMC free article] [PubMed] [Google Scholar]

71. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, et al. Coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med. 2020;382:e38. [PMC free article] [PubMed] [Google Scholar]

72. Escher R, Breakey N, Lämmle B. Severe COVID-19 infection associated with endothelial activation. Thromb Res. 2020;190:62. [PMC free article] [PubMed] [Google Scholar]

73. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD. Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis. 2016;52:e14–e17. [PubMed] [Google Scholar]

74. Garg K, Barfield ME, Pezold ML, Sadek M, Cayne NS, Lugo J, et al. Arterial thromboembolism associated with COVID-19 and elevated D-dimer levels. J Vasc Surg Cases Innov Tech. 2020;6(3):348–351. [PMC free article] [PubMed] [Google Scholar]


預防性抗栓塞治療

在COVID-19患者的預防中,建議對危重病患進行抗凝治療,不論是否伴隨D-二聚體水平升高 [54, 63, 75, 76]。充足劑量的皮下低分子量肝素(LMWH)能改善住院患者的生存率 [77]。在緊急情況下無法進行診斷測試的患者,如果出血風險較小,也應考慮治療性抗凝。此外,11%的VTE事件發生在出院後的中位數8天內(非COVID時期的1.6倍)[77]。然而,延長預防性抗凝可能會增加出血風險[78]。 

新冠肺炎病患出院後是否需要繼續預防性抗凝治療,目前還存在不確定性,因缺乏關於COVID-19病患出院後血栓栓塞事件發生率的數據。目前,國際血栓與止血學會(ISTH)和美國心臟病學院(ACC)的臨時指南建議COVID-19病患住院時應接受預防性低分子量肝素(LMWH)或未分級肝素治療,對於無法使用抗凝劑的患者,可使用機械性預防措施。然而,醫生們認為,在考慮持續性的血栓栓塞風險因素和總體風險-效益比之後,需要建議是否需要延長使用抗凝劑 [54, 80, 81]。目前,沒有必要僅因視網膜血管血栓栓塞事件的發生而開始給予抗凝劑或抗血小板治療,但在開始治療之前需要進行適當的系統評估。 

(點擊閱讀參考文獻)

74. Garg K, Barfield ME, Pezold ML, Sadek M, Cayne NS, Lugo J, et al. Arterial thromboembolism associated with COVID-19 and elevated D-dimer levels. J Vasc Surg Cases Innov Tech. 2020;6(3):348–351. [PMC free article] [PubMed] [Google Scholar]

75. Ren B, Yan F, Deng Z, Zhang S, Xiao L, Wu M, Cai L. Extremely High Incidence of Lower Extremity Deep Venous Thrombosis in 48 Patients With Severe COVID-19 in Wuhan. Circulation. 2020;142(2):181–183. [PubMed] [Google Scholar]

76. Paranjpe I, Fuster V, Lala A. Association of treatment dose anticoagulation with in-hospital survival among hospitalized patients with COVID-19. J Am Coll Cardiol. 2020 doi: 10.1016/j.jacc.2020.05.01. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

77. Roberts LN, Whyte MB, Georgiou L, Giron G, Czuprynska J, Rea C, et al. Postdischarge venous thromboembolism following hospital admission with COVID-19. Blood. 2020;136(11):1347–1350. [PMC free article] [PubMed] [Google Scholar]

78. Cohen AT, Harrington RA, Goldhaber SZ, Hull RD, Wiens BL, Gold A, Investigators APEX, et al. Extended Thromboprophylaxis with Betrixaban in Acutely Ill Medical Patients. N Engl J Med. 2016;375(6):534–44. [PubMed] [Google Scholar]

79. Tao DL, Bien JY, DeLoughery TG, Shatzel JJ. Extended thromboprophylaxis with direct oral anticoagulants for medical patients: a systematic review and meta-analysis. Blood. 2017;129(5):653–655. [PubMed] [Google Scholar]

80. Bikdeli B, Madhavan MV, Jimenez D, Chuich T, Dreyfus I, Driggin E, et al. J Am Coll Cardiol. 2020;75(23):2950–2973. [PMC free article] [PubMed] [Google Scholar]

81. Barnes GD, Burnett A, Allen A, Blumenstein M, Clark NP, Cuker A, et al. Thromboembolism and anticoagulant therapy during the COVID-19 pandemic: interim clinical guidance from the anticoagulation forum. J Thromb Thrombolysis. 2020;50(1):72–81. [PMC free article] [PubMed] [Google Scholar]

確診和血管炎

COVID-19病毒不僅可以損害血管內皮細胞,還會引發其發炎、凋亡和功能障礙 [82]。在COVID-19大流行期間,義大利的臨床醫師報告了越來越多的患者出現類似川崎病的病情,包括冠狀動脈的急性血管炎 [83]。COVID-19患者中也有報告出現蕁麻疹性血管炎 [84]。作者觀察到一例COVID-19患者出現了抗髓鞘oligodendrocyte糖蛋白抗體引起的炎性中樞神經系統血管病變,該患者經免疫調節治療後顯示臨床改善 [85]。類型3過敏和IL-6介導的發炎被提出作為COVID-19引起的血管炎症的病理生理學機制 [86]。 

(點擊閱讀參考文獻)

82. Becker RC. COVID-19 update: Covid-19-associated coagulopathy. J Thromb Thrombolysis. 2020;50:54–67. [PMC free article] [PubMed] [Google Scholar]

83. Verdoni L, Mazza A, Gervasoni A, Martelli L, Ruggeri M, Ciuffreda M, Bonanomi E, D’Antiga L. An outbreak of severe Kawasaki- like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet. 2020;395(10239):1771–1778. [PMC free article] [PubMed] [Google Scholar]

84. de Perosanz-Lobo D, Fernandez-Nieto D, Burgos-Blasco P, Selda-Enriquez G, Carretero I, Moreno C, et al. Urticarial vasculitis in COVID-19 infection: a vasculopathyrelated symptom? J Eur Acad Dermatol Venereol JEADV. 2020 doi: 10.1111/jdv.16713. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

85. Pinto AA, Carroll LS, Nar V, Varatharaj A, Galea I. CNS inflammatory vasculopathy with antimyelin oligodendrocyte glycoprotein antibodies in COVID-19. Neurol Neuroimmunol Neuroinflamm. 2020;7:e813. [PMC free article] [PubMed] [Google Scholar]

86. Roncati L, Ligabue G, Fabbiani L, Malagoli C, Gallo G, Lusenti B, et al. Type 3 hypersensitivity in COVID-19 vasculitis. Clin Immunol. 2020;29:108487. [PMC free article] [PubMed] [Google Scholar]


確診眼睛視網膜病變的病理機制

視網膜血管可能受到兩種機制的影響,一是超凝血性導致類似DIC的狀態,二是直接病毒入侵內皮細胞導致的類似血管炎的過程[37, 87]。在動物模型中,冠狀病毒已被先前證明能引起視網膜血管炎、視網膜變性和血膜視網膜屏障破壞[88]。實驗性冠狀病毒視網膜病(ECOR)模型顯示病毒引起的視網膜損傷呈雙相性,早期階段涉及視網膜炎症和免疫細胞浸潤以及發炎介質的釋放,之後的階段,在感染的第一周之後,發生病毒清除。之後,自體抗體產生對抗視網膜和視網膜色素上皮細胞,導致光感覺細胞和神經視網膜的損傷[89]。此外,冠狀病毒還可能導致眼內發炎和玻璃體炎[90]。 

眼底微血管病症狀在其他病毒感染如人類免疫缺陷病毒(HIV)疾病或系統性疾病如糖尿病和高血壓後常見 [91, 92]。然而,在這些情況下,微血管病變的表現形式如棉絮斑可能會有所不同,例如HIV相關的棉絮斑可能比糖尿病視網膜病變(DR)更常出現於中周圍區域。兩種CWS的病理機制可能不同,在病毒感染的情況下可能是由於直接病毒作用。目前尚不清楚SARS-CoV-2引起的視網膜微血管病變是由於直接病毒作用還是類似於DR。SARS-CoV和SARS-CoV-2病毒都會導致ACE2下調,這被提出作為發展視網膜缺血和內皮疾病的機制[91,93-95]。此外,除了作為疾病本身的表現外,CWS也可能是COVID-19患者未來血管併發症的標記,類似於糖尿病和高血壓血管疾病[96]。此外,在眼底檢查中出現的動脈微血管病變徵象可能有助於確定需要開始抗血小板治療的患者,除了抗凝治療。 

(點擊閱讀參考文獻)

87. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18:844–847. [PMC free article] [PubMed] [Google Scholar]

88. Seah I, Agrawal R. Can the coronavirus disease 2019 (COVID-19) affect the eyes? a review of coronaviruses and ocular implications in humans and animals. Ocul immunol Inflamm. 2020;28:391–395. [PMC free article] [PubMed] [Google Scholar]

89. Hooks JJ, Percopo C, Wang Y, Detrick B. Retina and retinal pigment epithelial cell autoantibodies are produced during murine coronavirus retinopathy. J Immunol. 1993;151(6):3381–9. [PubMed] [Google Scholar]

90. Doherty MJ. Ocular manifestations of feline infectious peritonitis. J Am Vet Med Assoc. 1971;159(4):417–24. [PubMed] [Google Scholar]

91. Akram MU, Akbar S, Hassan T, Khawaja SG, Yasin U, Basit I. Data on fundus images for vessels segmentation, detection of hypertensive retinopathy, diabetic retinopathy and papilledema. Data Brief. 2020;29:105282. [PMC free article] [PubMed] [Google Scholar]

92. Jaworski C. Morphology of the HIV versus the diabetic cotton wool spot. Optom Vis Sci. 2000;77:600–604. [PubMed] [Google Scholar]

93. Zhang H, Penninger JM, Li Y, Zhong N, Slutsky AS. Angiotensin-converting enzyme 2 (ACE2) as a SARS-CoV-2 receptor: molecular mechanisms and potential therapeutic target. Intensive Care Med. 2020;46:586–590. [PMC free article] [PubMed] [Google Scholar]

94. Verma A, Shan Z, Lei B, et al. ACE2 and Ang-(1–7) confer protection against development of diabetic retinopathy. Mol Ther. 2012;20:28–36. [PMC free article] [PubMed] [Google Scholar]

95. Duan Y, Beli E, Li Calzi S, et al. Loss of angiotensin-converting enzyme 2 exacerbates diabetic retinopathy by promoting bone marrow dysfunction. Stem Cells. 2018;36:1430–1440. [PMC free article] [PubMed] [Google Scholar]

96. Mahdjoubi A, Bousnina Y, Barrande G, Bensmaine F, Chahed S, Ghezzaz A. Features of cotton wool spots in diabetic retinopathy: a spectral-domain optical coherence tomography angiography study. Int Ophthalmol. 2020;40:1625–1640. [PubMed] [Google Scholar]


確診眼睛病變的免疫病理機制

ECOR中視網膜退化與TNF-α水平和可溶性TNFR-2的增加有關,這導致異常的TNF信號[97]。儘管抗TNF-α劑可能被認為是COVID相關表現的治療選擇,但在觸發暴發性結核病方面存在風險[98]。在這種情況下,顯示類固醇在壓制嚴重的炎症反應方面扮演了重要角色[99,100]。儘管尚不清楚調節COVID的細胞因子風暴的關鍵炎症分子是什麼,但已經注意到SARS-CoV-2產生了一個由第1型細胞因子的低水平和第2型細胞因子的高水平組成的細胞因子風暴。這第2型細胞因子活性可能會進一步通過上皮細胞分泌的屬於IL-1家族的報警蛋白IL-33增強[101]。這也可能與嗜中性白血球失調有關。目前正在進行IL-33阻斷的試驗(ClinicalTrials.gov識別號NCT04386616)[101]。細胞因子風暴的條件也可能受到特定的基因和環境因素的影響[102]。對於SARS-COV-2感染的“閾值模型”已將其病理生理學與巨噬細胞活化綜合徵(MAS)進行了比較[102]。最近的證據還表明涉及到炎症體活化和火凝性細胞死亡途徑[103, 104]。

(點擊閱讀參考文獻)

97. Hooper LC, Chin MS, Detrick B, Hooks JJ. Retinal degeneration in experimental coronavirus retinopathy (ECOR) is associated with increased TNF-alpha, soluble TNFR2 and altered TNF-alpha signaling. J Neuroimmunol. 2005;166(1–2):65–74. [PMC free article] [PubMed] [Google Scholar]

98. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. HLH across speciality collaboration, UK. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. [PMC free article] [PubMed] [Google Scholar]

99. Xu J, Tan D, Fu Y, Walline J, Yu X. Do corticosteroids have a role in treating Ebola virus disease? Sci China Life Sci. 2015;58(1):111–113. [PMC free article] [PubMed] [Google Scholar]

100. Neri P, Pichi F. COVID-19 and the eye immunity: lesson learned from the past and possible new therapeutic insights. Int Ophthalmol. 2020;40(5):1057–1060. doi: 10.1007/s10792-020-01389-2. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

101. Liang Y, Ge Y, Sun J. IL-33 in COVID-19: a friend or foe? Cell Mol Immunol. 2021;18:1602–1604. [PMC free article] [PubMed] [Google Scholar]

102. Schulert GS, Cron RQ. The genetics of macrophage activation syndrome. Genes Immun. 2020 doi: 10.1038/s41435-020-0098-4. [PubMed] [CrossRef] [Google Scholar]

103. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. 2020;20(6):363–374. [PMC free article] [PubMed] [Google Scholar]

104. Neri P, Lamperti M, Pichi F. SARS-COV-2 and eye immunity: the lesson was learned but we are not done yet. Brainstorming on possible pathophysiology inspired by ocular models. Int Ophthalmol. 2020;40(8):1879–1883. doi: 10.1007/s10792-020-01495-1. [PMC free article] [PubMed] [CrossRef] [Google Scholar]

結論

本篇系統性回顧從COVID-19疫情開始以來,全面綜述了所有因COVID-19疾病而引起的視網膜表現。視網膜表現可能從輕微的出血和棉絮狀斑塊,到更嚴重的併發症,如視網膜靜脈阻塞、動脈阻塞、局部視網膜梗塞和眼部炎症。這些表現可能在COVID-19症狀出現後一周內發生,也可能在六週以上後發生。如果有任何可疑的眼部疾病症狀或表現,臨床醫生必須注意此類併發症。針對眼部併發症的治療可能有助於解決特定的併發症。然而,在沒有先前接受任何此類治療的情況下,目前尚無關於僅對眼部併發症進行系統性抗凝治療的共識。